Jul 23, 2019

Temperature-independent slow carrier emission from deep-level defects in p-type germanium

In the deep-level transient spectroscopy (DLTS) spectra of the 3d-transition metals cobalt and chromium in p-type germanium, evidence is obtained that hole emission from defect levels can occur by two parallel paths. Besides classical thermal emission, we observed a second, slower and temperature-independent emission. We show that this extra emission component allows determining unambiguously whether or not multiple DLTS peaks arise from the same defect. Despite similar characteristics, we demonstrate that the origin of the non-thermal emission is not tunnelling but photoionization related to black-body radiation from an insufficiently shielded part of the cryostat.



Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

Jul 17, 2019

Heat capacity of germanium crystals with various isotopic composition

The heat capacity of three pure (n, p2×1016 cm-3) germanium crystals with different isotopic compositions was measured in the temperature range from 2.8 K to 100 K. These samples, one made of enriched 70Ge (95.6%), Ge of natural isotopic composition and n, p < 1014 cm-3, and one of the largest possible isotopic mass variance 70/76Ge (43%/48%) with n, p<1014 cm-3, show a change of the molar heat capacity (and corresponding Debye temperature, θD) as expected from the average mass variation, corresponding to θDM-0.5 (M = molar mass) at low temperatures. The mass effect is best visible around 21.5 K, at the minimum of the corresponding Debye temperatures θD, and amounts to ΔθD = 5.3 K for the difference between the Debye temperatures of 70Ge and 70/76Ge. The specific heat capacity of the natural Ge crystal agrees within 2% with the best data available in the literature taken on much larger masses of Ge.



Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

Jul 9, 2019

Highly boron-doped germanium layers on Si(001) grown by carbon-mediated epitaxy

Smooth and fully relaxed highly boron-doped germanium layers were grown directly on Si(001) substrates using carbon-mediated epitaxy. A doping level of  was measured by several methods. Using high-resolution x-ray diffraction we observed different lattice parameters for intrinsic and highly boron-doped samples. A lattice parameter of a Ge:B = 5.653 Å was calculated using the results obtained by reciprocal space mapping around the (113) reflection and the model of tetragonal distortion. The observed lattice contraction was adapted and brought in accordance with a theoretical model developed for ultra-highly boron-doped silicon. Raman spectroscopy was performed on the intrinsic and doped samples. A shift in the first order phonon scattering peak was observed and attributed to the high doping level. A doping level of  was calculated by comparison with literature. We also observed a difference between the intrinsic and doped sample in the range of second order phonon scattering. Here, an intense peak is visible at  for the doped samples. This peak was attributed to the bond between germanium and the boron isotope 11B.



Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

Jul 5, 2019

Unified model of diffusion of interstitial oxygen in silicon and germanium crystals

A theoretical modelling of the oxygen diffusivity in silicon and germanium crystals both at normal and high hydrostatic pressure has been carried out using molecular mechanics, semiempirical and ab initio methods. It was established that the diffusion process of an interstitial oxygen atom (Oi) is controlled by the optimum configuration of three silicon (germanium) atoms nearest to Oi. The calculated values of the activation energy ΔEa(Si) = 2.59 eV, ΔEa(Ge) = 2.05 eV and pre-exponential factor D0(Si) = 0.28 cm2 s−1, D0(Ge) = 0.39 cm2 s−1 are in good agreement with experimental ones and for the first time describe perfectly the experimental temperature dependence of the Oi diffusion constant in Si crystals (T = 350–1200 °C). Hydrostatic pressure (P80 kbar) results in a linear decrease of the diffusion barrier (\partial_P \Delta E_{\mathrm {a}} (P)=-4.38\times 10^{-3}~{\mathrm {eV~kbar^{-1}}}  for Si crystals). The calculated pressure dependence of Oi diffusivity in silicon crystals agrees well with the pressure-enhanced initial growth of oxygen-related thermal donors.


Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com